基础算法

排序

地方

一、排序

快速排序

给定你一个长度为 n 的整数数列。

请你使用快速排序对这个数列按照从小到大进行排序。

并将排好序的数列按顺序输出。

输入格式

输入共两行,第一行包含整数 n。

第二行包含 n 个整数(所有整数均在 1∼10^9 范围内),表示整个数列。

输出格式

输出共一行,包含 n 个整数,表示排好序的数列。

数据范围

1 ≤ n ≤ 100000

输入样例

1
2
5
3 1 2 4 5

输出样例

1
1 2 3 4 5

解答

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#include <iostream>

using namespace std;

const int N = 100010;

int q[N];

void quick_sort(int q[], int l, int r)
{
if (l >= r) return ;

int i = l - 1, j = r + 1, x = q[l + r >> 1];
while (i < j)
{
do i ++ ; while (q[i] < x);
do j -- ; while (q[j] > x);
if (i < j) swap(q[i], q[j]);
}

quick_sort(q, l, j);
quick_sort(q, j + 1, r);
}

int main()
{
int n;
scanf("%d", &n);

for (int i = 0; i < n; i ++ ) scanf("%d", &q[i]);

quick_sort(q, 0, n - 1);

for (int i = 0; i < n; i ++ ) printf("%d ", q[i]);

return 0;
}

归并排序

给定你一个长度为 n 的整数数列。

请你使用归并排序对这个数列按照从小到大进行排序。

并将排好序的数列按顺序输出。

输入格式

输入共两行,第一行包含整数 n。

第二行包含 n 个整数(所有整数均在 1∼10^9 范围内),表示整个数列。

输出格式

输出共一行,包含 n 个整数,表示排好序的数列。

数据范围

1≤n≤100000

输入样例

1
2
5
3 1 2 4 5

输出样例

1
1 2 3 4 5

解答

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <iostream>
using namespace std;
const int N = 1e5 + 10;

int a[N], tmp[N];
void merge_sort(int q[], int l, int r)
{
if (l >= r) return ;

int mid = l + r >> 1;

merge_sort(q, l, mid), merge_sort(q, mid + 1, r);

int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
else tmp[k ++ ] = q[j ++ ];
while (i <= mid) tmp[k ++ ] = q[i ++ ];
while (j <= r) tmp[k ++ ] = q[j ++ ];

for (int i = l, j = 0; i <= r; i ++ , j ++ ) q[i] = tmp[j];
}

int main()
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);

merge_sort(a, 0, n - 1);

for (int i = 0; i < n; i ++ ) printf("%d ", a[i]);

return 0;
}

逆序对的数量

给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数 n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1 ≤ n ≤ 100000,
数列中的元素的取值范围[1, 10^9]

输入样例

1
2
6
2 3 4 5 6 1

输出样例

1
5

解答

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <iostream>

using namespace std;

typedef long long LL;

const int N = 1e5 + 10;

int a[N], tmp[N];

LL merge_sort(int q[], int l, int r)
{
if (l >= r) return 0;

int mid = l + r >> 1;

LL res = merge_sort(q, l, mid) + merge_sort(q, mid + 1, r);

int k = 0, i = l, j = mid + 1;
while (i <= mid && j <= r)
if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
else
{
res += mid - i + 1;
tmp[k ++ ] = q[j ++ ];
}
while (i <= mid) tmp[k ++ ] = q[i ++ ];
while (j <= r) tmp[k ++ ] = q[j ++ ];

for (i = l, j = 0; i <= r; i ++ , j ++ ) q[i] = tmp[j];

return res;
}

int main()
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);

cout << merge_sort(a, 0, n - 1) << endl;

return 0;
}

二、二分

三、高精度

四、前缀和 差分

五、双指针算法

六、位运算

七、离散化

八、区间合并